A rusty way to store samples at liquid nitrogen
temperatures

Reto Trappitsch

Why all of this?

|| Biological samples in a mass spectrometer: A problem with a solution!
* Biological samples are generally water
- Wa want+t +A analuza camnlac in l+va hiah vacionm (I N1(A_10 mhav
+ Solution: Freeze the samples!
[l sample preparation
¢ High-pressure freezing vitrifies the sample
+ Cutting, polishing, coating, imaging
+ Immediate transfer to UHV prevents humidity crystallizing on sample

I sample analysis

* CryoNanoSIMS @EPFL
+ Can hold 2 samples at liquid nitrogen temperatures for analysis

[The current limitation

+ Sample preparation can work on more than 2 samples at a time
* We want to store samples in UHV at liquid nitrogen temperatures for days to weeks!

2/ 10

The CryoNanoSIMS

3/ 10

The CryoStorage chamber

4/ 10

How can we make this work in a user

way?

[l Hardware - What we are dealing with

+ 10" ReTerminal DM with touch screen (Raspberry Pi
based)

* Various instrument controllers that communicate via
RS-232, RS-485, TCP/IP

* Instruments that need to be controlled with digital
signals (24 V)

[l what the user should see

* Touch UI on the ReTerminal

+ Status of all instruments

+ Control of all functions

Il The attack plan
3)
ol
S

friendly

5/ 10

How things hang together...

Vacuum gauges Vacuum pumps Cryocooler Temperature sensor

instrumentRs

postcard-rpc Flow meter

Embassy

Baking system Vacuum dock Valve control

6 / 10

Oxidizing the CryoStorage

B Rust all the way down the stack
& Digital IO instrument control

* Design electronics board to plug in a RaspberryPi Pico
2
o Dual Cortex-M33 @150 MHz
o 4 MB flash
o 512 kB SRAM
* Firmware:
o Embedded Rust
o Embassy: EMBedded ASYnc

Communications MCU <-> Host

+ postcard and postcard-rpc for RPC over USB
* RPC calls and broadcasts

& Host level

* Poststation simplifies host communication

+ slint UI for touch interface

* instrumentRs drivers for each additional instrument
o Had to build this from scratch :)

+ tokio async runtime on host

chamber

&
@
=
a
=
a
=
=
>
>

slint

GUI toolkit

7 / 10

The current status of our touch UI

o Sample temperature Chamber Transfer
/\ll 293 K 1.23E-4 mbar 3.00E-1 mbar
Cryocooler Transfer valve D
% Off On Closed Open @
n n
Angela empty empty Veronique
@ Heinrich empty empty empty

8 / 10

Hello embedded world with embassy

No heap -> no std!

Access the hardware:

o PACs (peripheral
access crates)

o HALs (hardware
abstraction layer)

o BSCs (board support
crates)

Embassy provides us
with an async executor

Various Rust embedded

rooms on Matrix

o Great community
support and help!

Firmware can be

developed in safe Rust

> We get all the
benefits of Rust

#![no_std]
#![no_main]

use defmt::*;

use embassy_executor: :Spawner;

use embassy_rp::gpio;

use embassy_time: :Timer;

use gpio::{Level, Output};

use {defmt_rtt as _, panic_probe as _};

#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p =
embassy_xrp::init(Default::default());
let mut led = Output::new(p.PIN_25,
Level: :Low);

loop {
info!("led on!");
led.set_high();
Timer::after_millis(250).await;

info!("led off!");
led.set_low();
Timer::after_millis(250).await;

9 / 10

Take-aways: Why Rust and

Embedded Rust

* Rust is great for embedded development
+ Mature ecosystem, great community

£ Are we GUI yet?

+ Slint: great for GUIs on limited hardware

¢ Full desktop applications... soon?
o https://slint.dev/blog/making-slint-desktop-r
eady

Il Future plans

& Electronics
+ Test our reworked second edition board
* Design and build third version

& instrumentRs

+ Some instruments we need are still missing

what's to come?

Even Ferris likes the cold!

* instrumentRs has some weird design choices at the moment that need to be thought over

« It works... but could be better!
& Host software

+ Test and integrate with the system

10 / 10

