
A rusty way to store samples at liquid nitrogen
temperatures

Reto Trappitsch

Why all of this?

██ Biological samples in a mass spectrometer: A problem with a solution!

 • Biological samples are generally water

 • We want to analyze samples in ultra-high vacuum (UHV) ~10-10 mbar
 • Solution: Freeze the samples!

██ Sample preparation

 • High-pressure freezing vitrifies the sample
 • Cutting, polishing, coating, imaging
 • Immediate transfer to UHV prevents humidity crystallizing on sample

██ Sample analysis

 • CryoNanoSIMS @EPFL
 • Can hold 2 samples at liquid nitrogen temperatures for analysis

██ The current limitation

 • Sample preparation can work on more than 2 samples at a time
 • We want to store samples in UHV at liquid nitrogen temperatures for days to weeks!

2 / 10

The CryoNanoSIMS

3 / 10

The CryoStorage chamber

4 / 10

How can we make this work in a user friendly
way?

██ Hardware - What we are dealing with

 • 10" ReTerminal DM with touch screen (Raspberry Pi
 based)
 • Various instrument controllers that communicate via
 RS-232, RS-485, TCP/IP
 • Instruments that need to be controlled with digital
 signals (24 V)

██ What the user should see

 • Touch UI on the ReTerminal
 • Status of all instruments
 • Control of all functions

██ The attack plan

5 / 10

How things hang together...

6 / 10

Oxidizing the CryoStorage chamber

██ Rust all the way down the stack

▓▓▓ Digital IO instrument control

 • Design electronics board to plug in a RaspberryPi Pico
 2
 ◦ Dual Cortex-M33 @150 MHz
 ◦ 4 MB flash
 ◦ 512 kB SRAM
 • Firmware:
 ◦ Embedded Rust
 ◦ Embassy: EMBedded ASYnc

▓▓▓ Communications MCU <-> Host

 • postcard and postcard-rpc for RPC over USB
 • RPC calls and broadcasts

▓▓▓ Host level

 • Poststation simplifies host communication
 • slint UI for touch interface
 • instrumentRs drivers for each additional instrument
 ◦ Had to build this from scratch :)
 • tokio async runtime on host

7 / 10

The current status of our touch UI

8 / 10

Hello embedded world with embassy

 • No heap -> no std!
#![no_std]
#![no_main]

 • Access the hardware:
 ◦ PACs (peripheral use defmt::*;
 access crates) use embassy_executor::Spawner;
 ◦ HALs (hardware use embassy_rp::gpio;
 abstraction layer) use embassy_time::Timer;
 ◦ BSCs (board support use gpio::{Level, Output};
 crates) use {defmt_rtt as _, panic_probe as _};

#[embassy_executor::main]
 • Embassy provides us async fn main(_spawner: Spawner) {
 with an async executor let p =

embassy_rp::init(Default::default());
let mut led = Output::new(p.PIN_25,

 • Various Rust embedded Level::Low);
 rooms on Matrix
 ◦ Great community loop {
 support and help! info!("led on!");

 led.set_high();
 • Firmware can be Timer::after_millis(250).await;

developed in safe Rust
 ◦ We get all the info!("led off!");
 benefits of Rust led.set_low();

 Timer::after_millis(250).await;
 }
}

9 / 10

Take-aways: Why Rust and what's to come?

▓▓▓ Embedded Rust

 • Rust is great for embedded development
 • Mature ecosystem, great community

▓▓▓ Are we GUI yet?

 • Slint: great for GUIs on limited hardware
 • Full desktop applications... soon?
 ◦ https://slint.dev/blog/making-slint-desktop-r
 eady Even Ferris likes the cold!

██ Future plans

▓▓▓ Electronics

 • Test our reworked second edition board
 • Design and build third version

▓▓▓ instrumentRs

 • Some instruments we need are still missing
 • instrumentRs has some weird design choices at the moment that need to be thought over
 • It works... but could be better!

▓▓▓ Host software

 • Test and integrate with the system 10 / 10

